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Abstract. We review the existing evidence on the @on)inteprability of the mixmaster universe 
model. We show how a local Painlev6 analysis can be used to shldy the possible existence 
of essential singulxities. In agreement with recent studies, we find that the mixmaster model 
possesses critical essential singulatities, the multivalued character of which is incompatible 
with integrability. Our analysis is complemented by a numerical sludy of the specmm of the 
stretching numben of the system. We show that the zero-enew case is characterized by a 
vanishing maximal Lyapunov characteristic number. 

1. Introduction 

The mixmaster universe model (MUM) [1,2] has attracted the interest of both cosmologists 
and integrability specialists because of its somewhat ambiguous dynamical behaviour. In 
particular, and contrary to what is initially expected [3,4], numerical simulations have 
failed to exhibit ergodicity [5-8]. The absence of chaotic character led naturally to the 
consideration of the possible integrability of this model [9,10]. As we shall show in 
what follows this was too optimistic a view and the recent analytical results suggest non- 
integrability. The mixmaster universe model, also known, as the Biauchi IX model, is 
obtained through the solution of Einstein's equations and corresponds to a Hamiltonian 
system in three dimensions with zero energy [ll]. The equations of motion read 

(1) 2j; = (e2n - e28)2 - e4Y 2ff = (e2s - ezY)2 - 2 s  = (."Y 1 e2")2 - e4a 

where the dots mean derivatives with respect to time t .  The zero-energy condition in the 
a, j3, y variables is 

(2) 

In 112.1 we introduced a convenient variable transformation that allows us to write the MUM 
equations of motion in a purely polynomial form: 

E = -4(&j + B y  + Y&)  + + e4s + e4Y - 2eZ"+B) - 2e21e+Y) - ze2(Y+a' = 0, 

~ ~ (3) 

We must point out that this transformation is not canonical, i.e. the p's are not the conjugate 
momenta of the X's,  however, it is still straightforward to transcribe (1) into the new 
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x = e2" Y = e2a z = e2y 

p , = - ( B + P )  p y = - ( ) i + d r )  p , = - ( f f + B ) .  
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variables. We find 

X = x x ( P 2 - - P , - P p , )  
i. = Y ( P ,  - Pz - Px)  
z = Z(Pz - ~ P x  - Py) 
fix = X ( Y  + z - X )  
f iy  = Y ( Z + X -  Y )  
pz = Z ( X  + Y - Z )  

while the zero-energy condition becomes 

E =  P : + P , ~ + P : . - ~ P ~ P ~ - ~ P Y P , - ~ P Z P ,  
+ X 2 +  Y =  + z* - 2 X Y  - 2 Y Z  - 2zx = 0.  (5) 

The aim of the present paper is to review the existing evidence on the integrable or not 
character of the MUM and present more evidence in favour of non-integrability based on 
local singularity analysis. 

2. Brief analysis of the existing results 

What do the numerical experiments tell us? 
(a) The standard study of the chaotic character of a Hamiltonian system is based on 

the computation of the maximal Lyapunov characteristic number (La). In the case of 
the MUM the initial calculations have found a positive maximal L a  113,141. However, 
such calculations are particularly delicate, and when new, more accurate, calculations were 
performed they led to results compatible with a maximal LCN equal to zero [5-8,15]. 

@) Another numerical experiment is the one of Chiistiansen eta1 [16]. They studied the 
stability of the periodic orbits of the model. Having obtained evidence of instabilities they 
concluded on the non-integrability of the system. However, a word of caution is needed 
here. Unstable orbits do exist for integrable systems as well, and thus these results cannot 
constitute a foolproof argument. 

(c) A thud numerical study of a totally different nature was performed recently by 
Bountis and Drossos [17]. They studied the position of singularities in the complex-time 
plane and, in particular, the patterns in which the singularities are organized 1181. The 
interpretation of such results is not always unambiguous and is based largely on experience. 
What the authors of [17] find is that all the singularities obtained are poles. However, the 
singularities accumulate densely and this is considered as an indication of the existence of 
a natural boundary. Natural boundaries are, of course, not incompatible with integrability 
but the intricacy of the patterns observed has led Bountis and Drossos to conjecture that the 
MUM is not integrable. 

Thus, the numerical evidence to date is inconclusive, although the more recent results 
seem to indicate a non-integrable character. In section 4 we shall present new results based 
on the study of the Lyapunov spectra of orbits of the MUM. 

Let us now turn to the analytic results. 
(a) A first result is the one due to Sniatycki and Cushman 1191. The argument is indeed 

elementary. It is based on the observation that, for E = 0, the derivative of the quantity 

1 
Q=- 

X Y Z  



.~~~ ~ 
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is a strictly increasing function of time. We find, using equation (4). that 

0 = O(PX + Py + PE) 

d = n(2(p,2 + p; + p,“) - E )  

(7a) 

and 

(7b) 

where E is given by (5). This means that for E = 0 and also for E < 0, fi has a constant 
sign (the same as a). Thus, if we start with a positive value, we find that S2 decreases from 
infinity at 5 = --CO to a minimum and then increases to infinity at r = +w. Hence XYZ 
goes to zero and recurrences of the orbits are impossible. Thus Sniatycki and Cushman [19] 
conclude that the system is not chaotic. However, the original variables a, fl  and y tend 
to minus infinity and the system is not compact. In such systems the usual notion of chaos 
is not applicable. But it is possible that nearby orbits deviate considerably, although the 
escaping particles move with asymptotically constant velocity along straight lines. In such 
cases we speak of irregular or chaotic scattering 1201; in section 4 we will present some 
numerical evidence that this is the case for the MOM. 

The remaining results are based essentially on the singularity analysis approach, used 
under various (hopefully complementary) angles. 

(b) In [9] we have presented the Painlev6 analysis of the MLTM based on the approach of 
Ablowitz, Ramani and Segur (ARS) 1211. Two singular expansions were identified (r  = t - r g )  

(i) X, pz alone diverge while Y, Z, p y ,  p z  are finite (or any other circular permutation): 
[121. 

i 1 =*- r p * =  -; 
Y = yolr Z = zolr . p y  = p2 Pr = PS 

with resonances r = -LO, 0, 0,0,2, respectively. This is the ‘generic’ singular expansion. 
(ii) All X, Y,  Z, p z ,  p y .  p z  diverge as simple poles: 

1 
P x .  pp Pr = -. r r 

. 
I x, Y, z = h- 

The resonances in this case are r = -1, -1, -1,2,2,2, reaspectively. One may argue 
that a triple (-1) resonance indicates the existence of logarithms. However, and we wish 
to stress this point, this is not the case. As an example in favour of our argument we 
can present the Halphen system recently analysed by Maciejewski and Strelcyn [22]. This 
three-degrees of freedom system has a singular behaviour with triple (-1) resonance. Still 
 it^ has no logarithms and is, in fact, equivalent to the well-known Chazy system [23]. 
(Anticipating the presentation of case (c) below, we cl& that the logarithms enter only 
through the ‘interaction’ of the resonances -1 and 2.) Thus, following the analysis of [9] 
the MUM seems to satisfy the ARS criterion. 

(c) The presence of these negative resonances is an intriguing fact. This motivated 
a re-examination of the system in the light of the recommendations of Kruskal. Using 
a perturbative Painlev6 approach (based on an algorithm by Conte et a1 [24]), both the 
present authors [121 and Latifi etal [25] found that incompatibilities appear at the negative 
resonances. The difficulty here lies in the interpretation of the singular expansions obtained. 
They are not asymptotic either for times close to the singularity or for times far from it. 
However, the presence of logarithms (due to the incompatibilities) may be considered as 
an indication of non-integrability. In fact, Conte et a[ [24] used precisely this approach in 
order to single out the integrable members of the Chazy family. 
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(d) Another important piece of evidence is the work of Latifi et a1 [U]. They have 
performed a perturbative analysis around the Taub solution of the MUM. Starting from this 
analytically known solution the authors of [2Sl obtained. through perturbation, essential 
singularities of sufficient complexity to allow them to proclaim the non-integrability of the 
MUM. In what follows we shall return to this point and show how the results of Iatifi et al 
may be recovered using a purely local singularity analysis. 

(e) A last result that must be mentioned here is the one we obtained in [IO] using 
Ziglin’s approach [26]. We stated by transforming the Hamiltonian of the MUM (through a 
canonical variable pansformation) to 

H = & ( P i  + P; + P i )  
[e4Y + ,-Z(Y-JSZ, + e-zcY+JSz) - q e - 2 Y  + ecy-Jin + ,(Y+Jj,,)] 

(8) 
which is a Hamiltonian of Toda type. Note that the X, PX here are not the same as in (3) 
and (4). Next, a particular solution of the equation of motion with Y = Z = Py = PZ = 0 
was obtained. This led to the  equation^ 

(9) j i  = ieZX 

that can be integrated in a straightforward way. The crucial step in Ziglin’s approach is the 
one where we consider variations around this particular solution: X + X + f ,  Y + 0 + q, 
Z + 0 + r .  The first defines the tangential variational equation (TVE) 

f = -Ze”XC (10) 
where X is the solution of (9). The remaining two are the normal variational equations 
(NE) and the study of their monodromy properties allows one to conclude on their 
(n0n)integrability. Here the normal variational system decouples: 

ij = -ze2x tl (114 
-2e’Xy (1lb) 

and, moreover, the NVE are identical to the tangential equation. Since the tangential equation 
is integrable, the same applies to the normal equations; this is no proof of integrability of 
course. It just means that around this particular solution the system does not exhibit multi- 
valuedness incompatible with integrability. 

To summarize, the analytical results obtained to date seem to converge towards the 
non-integrability of the MUM. (Let us also mention here that all attempts to obtain constants 
of motion, besides the Hamiltonian, have failed.) As a further indication we shall present 
a local singularity analysis that will lead to essential singularities of character incompatible 
with integrability. 

3. Essential singularities from a local Painlev6 analysis 

In our previous work [9] we examined two singular behaviours of (4) presented as (i) 
and (ii) in (a) above. The question that can now be asked is whether these two singular 
behaviours are the only ones. In [9] we argued that no singular behaviour where two of the 
X‘s are divergent can exist. However, it turns out that this argument is oversimplified: such 
a situation can exist (although, admittedly, it is more complicated than initially thought). 
Let us, thus, assume that two of the X’s ,  say Y and Z, are more singular than X .  From 
equations (4a-c) it results that p z ,  p y .  pz diverge like U(l / r ) .  Then ( 4 4  shows that Y,  Z 
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must diverge like l/z2 while X is regular and starts as a constant. However. this behaviour 
would be incompatible with (4e,j') unless a cancellation occurs in Y - Z .  In fact, Y and Z 
must be equal not only at the level of the dominant term, but also at the subdominant terms 
of order l/r. It is then easy to compute the leading singularity: 

2 1 1 
P " = ;  Py = ; Pr = ; 

with AB = - 1. The cancellation of the difference Y - Z (and also of p y  - p z )  suggests a 
change of variables where this difference appears explicitly: 

Y - Z = S  Y + Z = u  p y - p z = q '  , p y + p z = p .  (13) 
Equations (4) can now be writen as 

X = x x ( P x - P P )  
U = -pxO f 6 q  
6 = - p S  x +0q 
pz = X ( 0  - X )  
p = x u - P  
4 = ( X  - U ) &  

The leading behaviour is p x  - 215, X - A, p - 215, U - 2 B / i 2 .  As we have seen 
previously, 6 and q cannot diverge either like l/r2 or like 115. In fact, the cancellation 
argument can be taken further by examining more closely equations (14c) and (143. Let us 
first assume that the dominant term in 6 is of order 5". Then, from (14c), we find that the 
dominant behaviour of q is O(&) and using (14j') we find that the dominant behaviour 
in S is O(t."+'). Thus, 6 and q vanish at all orders! Going back to the X ,  p variables we 
have Y = Z ,  p y  = p z  at all orders. 

In order to compute the beyond-all-orders behaviour of S and q we start by obtaining 
the singular expansion for the reduced, S = q = 0, system (14). We have 

X = x ( P x - P )  (154 
U~ = -pxO ( 1 5 ~  
p x  = X ( 0  - X )  (154 
p = xu. (154 

The resonances of (15) are -1, 0, 1, 2 corresponding to the expansions 

X = A f CA2z + &A3(&- 1 ) ~ '  

pr  = - + A(C + D T )  

p = ; + A ( D  + A ) z  

2 
5 

2 

where A ,  C and D are free parameters. Next, we remark that (14c) and (14j') are linear 
equations in terms of 6 and q. Combining the two we can obtain a single second-order 
equation for S. From (14j') we can drop the subdominant term XS and obtain 

ij = -60. (17) 
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Eliminating px  from (14c) and (1%) we obtain 

B 68 
q=a-7'. 

Differentiating this last relation and using (17) we find 

Retaining the dominant terms in the expansion of U we have: 

s AZr4 As3 

Next, we look for the solutions of (20) in the form speKl'. We find p = -1 f 2Ci and 
K = f Z / A  (where the two i signs are not independent). The general solution of (20) is 

(21) 

Thus, the difference of Y, Z is indeed a quantity beyond all orders of perturbation and 
contains essential singularities. Moreover, since C is afree constant, irrational in general, 
solution (21) has a transcendental branching point. What is worse, since the general solution 
contains both terms in (ZI), there is no possibility of bypassing the transcendental essential 
singularity by some choice of appropriate Stokes sectors [27]. The conclusion is that the 
singularity considered leads to critical branching and thus violates the Painlev6 property: it 
is expected to be non-integrable. 

8 = C,TZCi-le2i/Ar + C2z-2Ci--le-2i/Ai 

Some remarks are in order at this point. 
(i) It i s  clear that the singular behaviour we are studying is the one around the same 

solution on which Latifi et a1 [U] performed their perturbative calculation. Our results are 
in perfect agreement with theirs. However, in our case one does not have to know an exact 
solution in order to perform the calculation: the singular expansion suffices. 

(ii) The local singularity analysis can be extended so as to deal with essential 
singularities. The clue for the existence of essential singularities here was the singular 
expansion with two missing resonances. 

(iii) An alternate way to deal with essential singularities of exponential character was 
presented by Kruskal in his seminal paper [28]. We do not know of any systematic 
application of these ideas of Kruskal: if they could be implemented algorithmically they 
could solve the major difficulty of the detection of essential singularities. 

While the MUM is presumably non-integrable there exist interesting reductions that can 
be integrated. The best known is the Taub metric case [29] corresponding to Y = Z, 
p y  = pz in the notation of equation (4). The solution in this case can be expressed in terms 
of elliptic functions. Another reduction of the Bianchi M model is the one based on the 
assumption of self-duality [30]. The mixmaster equations of mbtion reduce, in this case, to 
the Halphen system (which is also integrable in terms of elliptic functions [31]). Finally, 
we should like to conclude with a reduction that obeys the constraint of zero energy. Taking 
X = ip,, Y = ip, and Z = ip,, we find E = 0 and the equations of motion reduce to 

(22) 

Introducing the new variables X = X + Y + Z, P = XY + YZ + ZX and ll = ~ X Y Z  
x = X(X - Y -~z) Y = Y(Y - z - X) z = Z(Z - x - Y). 

we find 

% = X 2 - 4 P  P = - b n  fi=-Xn. (23) 
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Eliminating E and IT, for P we find the equation 

p =  4pp (W 
that can be readily integrated once to P = 2P2 + KI  and then to P2 = 4 P 3  + 2~~ P + K ~ ,  
i.e. P is expressed in terms of a Weierstrass elliptic function. 

4. The Lyapunov spectra of orbits in the MUM 

The LCNs of a system give only an estimate of the asymptotic deviation of nearby orbits: 

Much more detailed information can be found if we take ‘local‘ or ‘finite-time’ Lyapunov 
numbers [32,333: 

(26) 

If we take At small, we define a ‘short-time Lyapunov number’ or ‘stretching number’. 
In the case of maps, we take At = 1, i.e. one iteration of the map [34,35], while in 
Hamiltonian systems we can take At equal to the integration step [36]. Then we calculate 
the distribution of the values of a. If after N ‘steps At along an orbit, the number of values 
of a in a given interval [a. a + da] is dN, the function 

W ( A t ) / W ) )  a =  
At 

1 dN 
N da 

S(a) = -- 
gives the ‘spectrum of stretching numbers’ or the ‘Lyapunov spectrum’ of the orbit. 

In the case of compact systems the spectrum (for large N) is invariant (a) with respect to 
the initial conditions along the orbit, (b) with respect to the direction of the initial deviation 
e(0) and (c) with respect to the initial conditions in a connected chaotic domain 1351. 
However, in a non-compact case the spectrum evolves with the time t = NAt. 

In the case of the mixmaster model we calculated several spectra with different initial 
conditions, different time steps At, different total times t and different energies E (zero, 
negative or positive). We used a very accurate integration scheme that gives the successive 
points in powers of A t ,  truncated when the accuracy of every variable is better than a 
fixed value of lo-”’ or Finally, we calculated the variational equations giving the 
variations~ of the variables X, Y, Z ,  px, p y ,  pz (that we call dX, dY, dZ, dp,, dp,, dp,) at 
the same time as the orbit itself. 

A few examples of~spectra for E = 0 are shown in figure 1. The time interval in 
figure 1 is At = 0.01. We see that the spectrum is restricted in a small interval around 0, 
between a = -0.005 and 0.10, while outside these F i t s  S(u) is almost exactly zero. For 
relatively small t = NAt the spectrum has two maxima, one for negative a and one for 
positive a. However, as the total time t increases, the spectrum becomes more and more 
peaked around a = 0 and it tends to a delta function at a = 0. The average value of a is 
the LCN and this tends to zero as N increases. For total times t = loz, lo3 and lo4 the 
LCNS are LCN = 7 x lo-’, 2 x lo-’ and -3 x respectively. Similar results are found 
if E < 0. In all cases the spectrum evolves towards a delta function at a = 0. 

These calculations are consistent with the result mentioned above, namely that for E 6 0 
the orbits are non-recurrent. However, the vanishing of the LCN is COMected to the fact 
that the orbits go to X = Y = Z = 0, i.e. to minus infinity in the original variables 01, p ,  y .  

In this system nearby orbits deviate with positive local (finite-time) K N s ,  and only in the 
limit t + CO does the LCN tend to zero. This behaviour is seen vividly in figures 2(a), (6) 
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Figure 1. Spectra of the stretching nombers for total times f = lo*, lo3 and lo4 time 
units in a case with E = 0. *tid conditions are (X. Y, 2, p x .  py9 p z  = 2 , l . l .  0.0.2) and 
(dX, dY. dZ. dp,,  d p y ,  dp,  = 1.0.0,O. 0.0). 

. I @  0.18 

8.05 0.- 0.05 

1 

-0.00 -0.m -0.m 

-0.05 0 . E  -0.05 

-8.10 e.10 -6.10 

t 

a e 6  

!?i- 2. The evolution of a io time, for the orbit 
of figure 1. The values of (I were calculated at each 
integration step Ar = 0.001. A check with different 
integrdon steps has shown that this K p  is exact. 

.""_;8;90 .a. 18 zeaa 2200 ZleB 26p8 2E-a 
t 

and (c), where we give the stretching number a as a function of time. The values of a have 
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fast oscillations initially, but the average value is clearly positive. Later on, the oscillations 
become smaller and their period larger. After a long enough h e ,  the oscillations vanish 
and the value of a tends to 'zero. This behaviour explains the shrinking of the spectrum as 
the total tine increases (figure l), and the fact that the finitetime LCN tends to zero when 
t + 03. 

The case E > 0 is more complicated because the value of 2(p: + p,' + p,") - E 
(equation (7b)) changes sign several times and the shrinking of the spectrum is not so fast 
as in the case E = 0. However, this case is only of theoretical interest (it does not represent 
the MUM) and will not be discussed further here. 

We conclude that the existing evidence shows that the mixmaster universe model is not 
integrable. It cannot be called chaotic in the usual sense, but it has the main properties of 
a chaotic scattering system. 
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